你的位置:TS伪娘 > 色无极影视 > >校园春色 亚洲色图 郑刚莳植:一文了解,室性早搏诱发的心肌病|缺血性|心律失常
热点资讯
色无极影视

校园春色 亚洲色图 郑刚莳植:一文了解,室性早搏诱发的心肌病|缺血性|心律失常

发布日期:2025-03-27 16:45    点击次数:130

校园春色 亚洲色图 郑刚莳植:一文了解,室性早搏诱发的心肌病|缺血性|心律失常

校园春色 亚洲色图

天然20世纪初初度在心房纤颤(AF)患者中模样了心律失常引起的心肌病(T-CM),但直到90年后的1998年才发现室性早搏诱发的心肌病(PVC-CM)[1-2]。在分裂于1962年和2011年开发的动物实验模子[3-4]解说这些抓续的心律失常可能导致结构正常腹黑的左心室功能贬抑之前,东谈主们对心律失常和心肌病之间的病因关系仍抓怀疑格调。

PVC-CM被《2016年好意思国腹黑协会延迟型心肌病科学声明》[1]认定为一种独到的临床实体。PVC-CM被界说为由通常的PVC引起的左心室功能贬抑。叠加的PVC-CM可被界说为因既往已知己肌病患者的频发PVC而使左室射血分数(LVEF)恶化至少10%。频发PVC简单被觉得是>5%的PVC负荷,PVC负荷≥10%则简单被觉得是高且权贵的,会激发PVC-CM。

作家:郑刚 泰达海外心血管病病院

本文为作家授权医脉通发布,未经授权请勿转载。

PART01

PVC和PVC-CM的流行病学

在莫得腹黑病的患者中,12导联心电图在10s内PVC的发病率推断在1%~4%之间[5-6]。在动态心电图纪录技能,PVC的患病率明显更高(在24h和48h动态心电图监测中,PVC的患病率分裂为40%和75%)[6]。这不错通过PVC频率随时候的权贵变化来解释[7]。

此外,PVC患病率还与年事干系,11岁以下儿童的患病率<1%,75岁及以上受试者的患病率接近70%[5-6]。PVC更常见于心梗后、冠心病以及延迟型心肌病和心衰患者中[5,8]。委果一半的II级和III级心衰患者有频发PVC(>1000个PVC/d)[8]。

临床磋议发现,即使在纠正年事和其他心电图异常后,高PVC负荷也与左心室功能贬抑、缩小性心衰(HR=1.48-1.8)和死亡率(HR= 1.31)[9-15]加多干系[5]。令东谈主骇怪的是,据报谈,在莫得其他心血管风险成分的情况下,<65岁的PVC受试者发生缩小性心衰的风险加多了6倍(HR=6.5)[16],而心率>100 bpm的受试者死亡率更高[5]。对ARIC磋议的二次分析暴露,PVC高负荷患者发生卒中的风险权贵加多(HR=1.71),且或可归因于房室重构[17]。

在PVC负荷>10%的患者中,PVC-CM的患病率为7%[18]。可是,PVC-CM的患病率可能被低估[6]。临床磋议阐发,在转诊进行射频消融(RFA)的PVC患者中,有9%~30%的患者被会诊为PVC-CM[9,12,19-21]。对CHF-STAT磋议的二次分析[22](>10 PVCs/h,LVEF<40%)相同暴露,悉数心肌病患者的PVC-CM发生率约为40%,非缺血性心肌病患者的PVC-CM发生率则高达66%[23]。这些数据辅导,频发PVC是缩小性心衰和死亡率加多的一个要害且可更变的风险成分。

PART02

PVC的急性影响及PVC-CM的潜在诱因

PVC具有先天性的急性内在影响,包括心律不限定、早搏后强化作用(post-extrasystolic potentiation)、左心室不同步、房室不同步和心率增快[14,24-28]。现在,尚未明确这些成分是否不错通过更变血液能源学和自主神经系统(ANS)的触发成分来助力PVC-CM的发展,也不明晰其是怎样导致PVC-CM发展的[29-30]。

早搏后强化作用、心律不限定、左心室不同步、房室分离和ANS更变可能是PVC-CM的潜在诱因。PVC-CM和T-CM之间细胞和电重构的差异辅导,心动过速不可能是PVC-CM的独一诱因。

早搏后强化和心律不限定的作用不错通过评估短缺左心室不同步的通常起搏的慢性影响来惩处。尽管Pacchia等[31]解说心肌病可由房早二联律诱发,但在临床和其他动物模子中尚未不雅察到这少许[32-34]。这些发现标明,心律不限定和早搏后强化作用在PVC-CM的病理生理学中起着有限的作用(淌若有的话)。Gerstenfeld等[33]在二元PVC动物模子中解说,左心室功能贬抑在来自左心室外膜的PVC中更为明显,因为与心内膜右心室(RV)游离壁比拟,它们进展出更高程度的不同步性[33]。这也与临床磋议一致,其中心外膜PVC和QRS>150ms是PVC-CM的展望成分[35-36]。

PART03

PVC-CM的潜在机制

与T-CM比拟,PVC-CM细胞机制尚未得到豪放磋议。可是,很明显,与包括T-CM在内的其他模子比拟,组织病理学和细胞特征存在明显差异[3-4,33,37-38]。PVC-CM缩小功能贬抑的主要原因似乎是钙携带的钙开释机制自己的芜杂,L型钙通谈和Ryanodine受体功能更变也被觉得是一种潜在的机制。与其他心肌病相似,该PVC-CM模子揭示了电生理重塑。组织病理学异常是明显的,莫得炎症或细胞凋一火加多的根据,也莫得纤维化。线粒体磋议标明氧化磷酸化莫得变化[3]。在临床施行中,PVC-CM患者的腹黑核磁显像(MRI)暴露无瘢痕,也复古了上述截止[12]。这些发现进一步证实了原发性功能异常是这种可逆心肌病的主要机制[3,12,33,37-38]。可是,是否悉数的细胞和分子变化齐是对心肌病的反应,而不是心肌病的原因尚不明晰。

PART04

PVC-CM的展望因子

PVC负荷已被解说是PVC-CM的主要展望成分(PVC负荷每加多1%,OR=1.25)[9,19,36-40]。两项主要磋议标明,>16%和24%的PVC负荷最能识别会诊为PVC-CM的患者(敏锐性和特异性分裂为79%~100%和78%~87%)[9,18]。

天然多项磋议暴露,携带PVC-CM需要至少10%的PVC负荷[9,18,41-43],但也有磋议对此建议了质疑,这些磋议暴露PVC负荷低至6%~8%时左心室功能才能得到改善[22,25,39,44-46]。此外,动态心电图监测的时长具有要害意旨,将抓续时候从24h加多到7d不错使达到10%阈值的患者数目加多一倍[47]。

值得一提的是,一些患者即使在PVC负荷很高的情况下也不会出现心肌病,辅导其他患者特征和/或PVC特征也可能在PVC-CM的病理生理学中线路作用。一些其他PVC特征已被发现是PVC-CM的沉寂展望成分,如男性[48]、无症状(调度OR=13.1)或心悸抓续时候>30个月、PVC耦合终结的变异性(OR=1.04)[13]、PVC的QRS抓续时候>150ms和心外膜发源[11,18-19,35-36,40,48-49]。其他不太常见的沉寂展望因子是体重指数(BMI)>30kg/m2(OR=3.03)[13]、日夜节拍PVC漫衍的变异性较小(OR=16.3)[50]和逆行P波的存在(OR=2.79)[40]。此外,PVC技能的房室不同步可能是一个潜在的展望成分,但仍有待磋议[27,40]。

除了PVC负荷外,大无数展望成分的干系报谈并不和解,反馈了不同东谈主群的异质性。尽管还需要进一步考据,但如故开发了PVC-CM指数,包括PVC负荷、PVC-QRS宽度和心外膜发源,试图识别出患有PVC-CM的高概率患者[36]。

尽管短的PVC偶联终结与特发性室颤干系[51],但大无数磋议尚未发现PVC偶联终结和心肌病之间的明确关系[11]。一些磋议辅导interpolated PVC或耦合间期<450ms或为PVC-CM的展望成分[41,52];有些磋议还暴露,PVC偶联间期变异性(破碎度)不仅与更高的PVC-CM风险干系,况且与心血管死亡率干系[13,53-54]。

除心外膜发源外,其他PVC发源位置可能不是PVC-CM的展望成分[19,41]。大型系列磋议发现,关于PVC-CM患者,分裂有24%、21%、28%、7%、5%和4%的PVC发源于冠状窦(心外膜)、右心室(RV)流出谈,左心室(RV)流出谈、二尖瓣环(心内膜)RV/LV隔阂和RV/LV心尖。

遗传易理性也不错解释为什么一些患者倾向于发展为PVC- CM,而另一些患者即使有近似的PVC职守却莫得发展为PVC-CM,如钠通谈Nav1.5亚基的R222Q错义变体,导致更大和更早的钠电流,被归因于浦肯野的速度依赖性异位,并与胺碘酮或氟卡尼调理后可逆的心肌病干系[55]。

PART05

PVC-CM的临床进展

PVC-CM发展的时候进度尚不明晰,推断在数月至数年内[36,40,49]。动物实验暴露,抓续高PVC负荷(33%~50%)的动物可在4周内发展为心肌病[3,24],但在东谈主类磋议并不一致。

PVC-CM患者的临床进展互异,从无症状或暧昧症状到心衰以致昏倒。现在尚未明确患者有无症状的机制,但PVC偶联终结比<0.5(PVC偶联终结/窦偶联终结比)被觉得是出现临床症状的要害秀丽[56]。

PVC-CM患者可能出现轻至中度左心室缩小功能贬抑、左心室延迟、轻度MR和左心房扩大,可在摒除PVC后2~12周内销亡[3,15,24]。

PART06

会诊和影像学特征

PVC-CM是一种破除性会诊,在PVC负荷>10%,尤其诟谇缺血性CM患者中应该被怀疑。在疑似患者中,超声心动图和PVC特征有助于识别这些患者[1]。心电图,尤其是长程动态心电图对提高PVC负荷会诊率相同至关要害。

腹黑成像是识别左心室功能贬抑和高PVC负荷(≥10%)患者的关节。晚期钆增强的腹黑MR具有识别瘢痕和量化瘢痕负荷的上风,这反过来又可展望对PVC遏制的反应[59]。

此外,详备的病史沟通和干系检测,有助于破除心肌病的其他病因。除不限定的心音和轻飘的心衰迹象外,患者的身段查验截止简单正常。

PART07

PVC-CM的调理

现在,RFA或抗心律失常药物(AADs)的PVC遏制政策是一种豪放罗致的喧阗设施,用于调理可能由频发PVC引起或加剧的心肌病[58]。可是,在莫得左心室功能贬抑(LVEF≥50%)、症状或特发性室颤的情况下,对频发PVC(负荷≥10%)的调理尚不解确。

RFA和AADs遏制PVC的恒久得手率相似,约为70%~80%[19,22,36,41,43,66]。得手的RFA可能局限于发源于乳头肌、心外膜或近邻关节结构(如冠状动脉和传导系统)的PVC患者[14,19,41]。因此,粗略5%~15%的RFA患者可能需要AADs调理[41]。

PVC遏制政策(RFA或AADs)总体风险较低。据报谈,RFA的并发症发生率在5%~8%之间,但AADs的停用率接近10%,这是由于短期和恒久反作用[19,41,59,66-67]以及可能跟着时候的推移而裁减的疗效[68]。

RFA反应的沉寂展望成分包括消融得手(OR=15.7)、心肌瘢痕量<9gm(OR=0.9)和平均PVC负荷减少(OR=1.09)[59,66];这些均复古使器具有晚期钆增强的腹黑MR来评估瘢痕职守,以展望PVC遏制的应酬者与非应酬者。可是,淌若PVC负荷权贵减少(>20%),心肌瘢痕的存在似乎与展望反应不太干系[59]。违反,PVC位置似乎不可展望LVEF的改善[67]。最近,通过有创血压监测评估的早搏后强化作用被模样为RFA后左心室功能规复的展望见识[71]。

多项临床西席一致标明,诳骗AADs遏制PVC后,左心室功能权贵增强,畛域为10%~13%[22,41]。可是,CAST西席标明,在心梗后PVC频发的患者中,使用IC类AADs会加多死亡率,不饱读吹在缺血性和非缺血性心肌病患者中使用,但GESICA、CAMIAT和CHF STAT西席标明,心梗后使用胺碘酮不错裁减非缺血性心肌病的发生[22,69]。

天然现存文件复古通过摒除PVC来改善左心室功能和症状,但有限的数据标明,PVC遏制会更变包括心衰和死亡在内的心血行状件风险[72-73]。改日尚需进行进一步西席,以了解怎样最佳地调理频发PVC和心肌病患者[70,72]。

PART08

PVC-CM患者随访

由短缺PVC-CM发展潜在风险的数据,因此患者需要每6~12个月进行一次随访,淌若出现心衰症状,则需要更密切地随访。

在随访时,应叠加超声心动图,以阐述左心室功能正常,同期应试虑长程动态心电图监测以再行评估PVC负荷。

行家简介

郑刚 莳植

•现任泰达海外心血管病病院特聘行家,济兴病院副院长

•中国高血压定约理事,中国心力衰退学会委员,中国老年医学会高血压分会天津服务组副组长、中国医疗保健海酬酢流促进会高血压分会委员。天津医学会心血管病专科委员会委员,天津医学会老年病专科委员会常委。天津市医师协会高血压专科委员会常委,天津市医师协会老年病专科委员会委员,天津市医师协会心力衰退专科委员,天津市医师协会心血管内科医师分会双心专科委员会委员。天津市腹黑学会理事、天津市心律学会第一届委员会委员,天津市房颤中心定约常委。天津市医药学行家协会第一届心血管专科委员会委员,天津市药理学会临床心血管药理专科委员会常委。天津市中西医勾搭学会心血管疾病专科委员会常委

•《中华老年心脑血管病杂志》编委,《中华临床 医师杂志》(电子版)特邀审稿行家,《中华会诊学电子杂志》审稿行家,《中原医学》杂志副主编,《中国心血管杂志》常务编委,《中国心血管病磋议》杂志第四届编委,《全国临床药物》杂志编委、《医学综述》杂志会编委、《中国医药导报》杂志编委、《中国当代大夫》杂志编委、《心血管外科杂志(电子版)》审稿行家

•本东谈主在专科期刊和心血管网发表著述948篇其中第一作家759篇,进入著书11部

•获天津市2005年度“五一作事奖章和奖状” 和 “天津市卫生行业第二届东谈主民舒畅的好大夫”名称

参考文件

1. Duffee DF, Shen WK, Smith HC. Suppression of frequent premature ventricular contractions and improvement of left ventricular function in patients with presumed idiopathic dilated cardiomyopathy. Mayo Clin Proc 1998;73:430–3.

2. Chugh SS, Shen WK, Luria DM, Smith HC. First evidence of premature ventricular complex-induced cardiomyopathy: a potentially reversible cause of heart failure. J Cardiovasc Electrophysiol 2000; 11: 328–9.

3. Huizar JF, Kaszala K, Potfay J et al. Left ventricular systolic dysfunction induced by ventricular ectopy: a novel model for premature ventricular contraction-induced cardiomyopathy. Circ Arrhythm Electrophysiol 2011;4:543–9.

4. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 1997;29:709–15.

5. Engel G, Cho S, Ghayoumi A et al. Prognostic significance of PVCs and resting heart rate. Ann Noninvasive Electrocardiol 2007;12:121–9.

6. Lee GK, Klarich KW, Grogan M, Cha YM. Premature ventricular contraction-induced cardiomyopathy: a treatable condition. Circ Arrhythm Electrophysiol 2012;5:229–36.

7. Schmidt G, Ulm K, Barthel P, Goedel-Meinen L, Jahns G, Baedeker W. Spontaneous variability of simple and complex ventricular premature contractions during long time intervals in patients with severe organic heart disease. Circulation 1988;78:296–301.

8. Chen T, Koene R, Benditt DG, Lu F. Ventricular ectopy in patients with left ventricular dysfunction: should it be treated? J Card Fail 2013;19:40–9.

9. Baman TS, Lange DC, Ilg KJ et al. Relationship between burden of premature ventricular complexes and left ventricular function. Heart Rhythm 2010;7:865–9.

10. Bogun F, Crawford T, Reich S et al. Radiofrequency ablation of frequent, idiopathic premature ventricular complexes: comparison with a control group without intervention. Heart Rhythm 2007;4:863–7.

11. Del Carpio Munoz F, Syed FF, Noheria A et al. Characteristics of premature ventricular complexes as correlates of reduced left ventricular systolic function: study of the burden, duration, coupling interval, morphology and site of origin of PVCs. J Cardiovasc Electrophysiol 2011;22:791–8.

12. Hasdemir C, Yuksel A, Camli D et al. Late gadolinium enhancement CMR in patients with tachycardia-induced cardiomyopathy caused by idiopathic ventricular arrhythmias. Pacing Clin Electrophysiol 2012;35:465–70.

13. Kawamura M, Badhwar N, Vedantham V et al. Coupling interval dispersion and body mass index are independent predictors of idiopathic premature ventricular complex-induced cardiomyopathy. J Cardiovasc Electrophysiol 2014;25:756–62.

14. Maeda S, Chik WW, Liang JJ et al. Recovery of renal dysfunction after catheter ablation of outflow tract ventricular arrhythmias in patients with ventricular premature depolarization-mediated cardiomyopathy. J Interv Card Electrophysiol 2017;48:43–50.

15. Takemoto M, Yoshimura H, Ohba Y et al. Radiofrequency catheter ablation of premature ventricular complexes from right ventricular outflow tract improves left ventricular dilation and clinical status in patients without structural heart disease. J Am Coll Cardiol 2005;45:1259–65.

16. Agarwal V, Vittinghoff E, Whitman IR, Dewland TA, Dukes JW, Marcus GM. Relation Between Ventricular Premature Complexes and Incident Heart Failure. Am J Cardiol 2017;119:1238–1242.

17. Agarwal SK, Heiss G, Rautaharju PM, Shahar E, Massing MW, Simpson RJ Jr. Premature ventricular complexes and the risk of incident stroke: the Atherosclerosis Risk In Communities (ARIC) Study. Stroke 2010;41:588–93.

18. Hasdemir C, Ulucan C, Yavuzgil O et al. Tachycardia-induced cardiomyopathy in patients with idiopathic ventricular arrhythmias: the incidence, clinical and electrophysiologic characteristics,and the predictors. J Cardiovasc Electrophysiol 2011;22:663–8.

19. Latchamsetty R, Yokokawa M, Morady F et al. Multicenter Outcomes for Catheter Ablation of Idiopathic Premature Ventricular Complexes. JACC Clin Electrophysiol 2015;1:116–123.

20. Lu F, Benditt DG, Yu J, Graf B. Effects of catheter ablation of “asymptomatic” frequent ventricular premature complexes in patients with reduced (<48%) left ventricular ejection fraction. Am J Cardiol 2012;110:852–6.

21. Yokokawa M, Good E, Crawford T et al. Recovery from left ventricular dysfunction after ablation of frequent premature ventricular complexes. Heart Rhythm 2013;10:172–5.

22. Singh SN, Fletcher RD, Fisher SG et al. Amiodarone in patients with congestive heart failure and asymptomatic ventricular arrhythmia. Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure. N Engl J Med 1995;333:77–82.

23. Huizar JF, Fisher SG, Kaszala K et al. Amiodarone is an Effective Treatment of PVC-Cardiomyopathy in the Veteran Population (Abstract 14667). Circulation 2017;136.

24. Tan AY, Hu YL, Potfay J et al. Impact of ventricular ectopic burden in a premature ventricular contraction-induced cardiomyopathy animal model. Heart Rhythm 2016;13:755–61.

25. Sadron Blaye-Felice M, Hamon D, Sacher F et al. Reversal of left ventricular dysfunction after ablation of premature ventricular contractions related parameters, paradoxes and exceptions to the rule. Int J Cardiol 2016;222:31–6.

26. Potfay J, Kaszala K, Tan AY et al. Abnormal Left Ventricular Mechanics of Ventricular Ectopic Beats: Insights Into Origin and Coupling Interval in Premature Ventricular Contraction-Induced Cardiomyopathy. Circ Arrhythm Electrophysiol 2015;8:1194–200.

27. Kuroki K, Tada H, Seo Y et al. Prediction and mechanism of frequent ventricular premature contractions related to haemodynamic deterioration. Eur J Heart Fail 2012;14:1112–20.

28. Cooper MW. Postextrasystolic potentiation. Do we really know what it means and how to use it? Circulation 1993;88:2962–71.

29. Hamon D, Rajendran PS, Chui RW et al. Premature Ventricular Contraction Coupling Interval Variability Destabilizes Cardiac Neuronal and Electrophysiological Control: Insights From imultaneous Cardioneural Mapping. Circ Arrhythm Electrophysiol 2017;10.

30. Smith ML, Hamdan MH, Wasmund SL, Kneip CF, Joglar JA, Page RL. High-frequency ventricular ectopy can increase sympathetic neural activity in humans. Heart Rhythm 2010;7:497–503.

31. Pacchia CF, Akoum NW, Wasmund S, Hamdan MH. Atrial bigeminy results in decreased left ventricular function: an insight into the mechanism of PVC-induced cardiomyopathy. Pacing Clin Electrophysiol 2012;35:1232–5.

32. Kowgli NG, Jovin D, O’Quinn M et al. Neither Irregularity nor Tachycardia are Triggers of PVC-cardiomyopathy: Comparing Persistent Atrial and Ventricular Ectopy in an Animal Model. Heart Rhythm 2018;15:S594.

33. Walters TE, Rahmutula D, Szilagyi J et al. Left Ventricular Dyssynchrony Predicts the Cardiomyopathy Associated with Premature Ventricular Contractions (In Press). J Am Coll Cardiol 2018

34. Akyeampong D, Tan AY, kaszala K, Ellenbogen KA, Huizar JF. Premature Atrial Contractions Are Not associated With Left Ventricular Dysfunction (Abstract 14896). Circulation 2016;134.

35. Yokokawa M, Kim HM, Good E et al. Impact of QRS duration of frequent premature ventricular complexes on the development of cardiomyopathy. Heart Rhythm 2012;9:1460–4.

36. Hamon D, Blaye-Felice MS, Bradfield JS et al. A New Combined Parameter to Predict Premature Ventricular Complexes Induced Cardiomyopathy: Impact and Recognition of Epicardial Origin. J Cardiovasc Electrophysiol 2016;27:709–17.

telegram 文爱

37. Wang Y, Eltit JM, Kaszala K et al. Cellular Mechanism of Premature Ventricular Contraction-Induced Cardiomyopathy. Heart Rhythm 2014.

38. Jiang M, Zhang M, Howren M et al. JPH-2 interacts with Cai-handling proteins and ion channels in dyads: Contribution to premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 2016;13:743–52.

39. Lee A, Denman R, Haqqani HM. Ventricular Ectopy in the Context of Left Ventricular Systolic Dysfunction: Risk Factors and Outcomes Following Catheter Ablation. Heart Lung Circ 2018.

40. Ban JE, Park HC, Park JS et al. Electrocardiographic and electrophysiological characteristics of premature ventricular complexes associated with left ventricular dysfunction in patients without structural heart disease. Europace 2013;15:735–41.

41. Zhong L, Lee YH, Huang XM et al. Relative efficacy of catheter ablation vs antiarrhythmic drugs in treating premature ventricular contractions: a single-center retrospective study. Heart Rhythm 2014;11:187–93.

42. Penela D, Van Huls Van Taxis C, Van Huls Vans Taxis C et al. Neurohormonal, structural, and functional recovery pattern after premature ventricular complex ablation is independent of structural heart disease status in patients with depressed left ventricular ejection fraction: a prospective multicenter study. J Am Coll Cardiol 2013;62:1195–202.

43. Penela D, Acosta J, Aguinaga L et al. Ablation of frequent PVC in patients meeting criteria for primary prevention ICD implant: Safety of withholding the implant. Heart Rhythm 2015;12:2434–42.

44. Yarlagadda RK, Iwai S, Stein KM et al. Reversal of cardiomyopathy in patients with repetitive monomorphic ventricular ectopy originating from the right ventricular outflow tract. Circulation 2005;112:1092–7.

45. Shanmugam N, Chua TP, Ward D. ‘Frequent’ ventricular bigeminy--a reversible cause of dilated cardiomyopathy. How frequent is ‘frequent’? Eur J Heart Fail 2006;8:869–73.

46. Sarrazin JF, Labounty T, Kuhne M et al. Impact of radiofrequency ablation of frequent post-infarction premature ventricular complexes on left ventricular ejection fraction. Heart Rhythm 2009;6:1543–9.

47. Loring Z, Hanna P, Pellegrini CN. Longer Ambulatory ECG Monitoring Increases Identification of Clinically Significant Ectopy. Pacing Clin Electrophysiol 2016;39:592–7.

48. Yokokawa M, Kim HM, Good E et al. Relation of symptoms and symptom duration to premature ventricular complex-induced cardiomyopathy. Heart Rhythm 2012;9:92–5.

49. Carballeira Pol L, Deyell MW, Frankel DS et al. Ventricular premature depolarization QRS duration as a new marker of risk for the development of ventricular premature depolarization-induced cardiomyopathy. Heart Rhythm 2014; 11:299–306.

50. Bas HD, Baser K, Hoyt J et al. Effect of circadian variability in frequency of premature ventricular complexes on left ventricular function. Heart Rhythm 2016;13:98–102.

51. Knecht S, Sacher F, Wright M et al. Long-term follow-up of idiopathic ventricular fibrillation ablation: a multicenter study. J Am Coll Cardiol 2009;54:522–8.

52. Olgun H, Yokokawa M, Baman T et al. The role of interpolation in PVC-induced cardiomyopathy.Heart Rhythm 2011;8:1046–9.

53. Lee CH, Park KH, Nam JH et al. Increased variability of the coupling interval of premature ventricular contractions as a predictor of cardiac mortality in patients with left ventricular dysfunction. Circ J 2015;79:2360–6.

54. Bradfield JS, Homsi M, Shivkumar K, Miller JM. Coupling interval variability differentiates ventricular ectopic complexes arising in the aortic sinus of valsalva and great cardiac vein from other sources: mechanistic and arrhythmic risk implications. J Am Coll Cardiol 2014;63:2151–2158.

55. Mann SA, Castro ML, Ohanian M et al. R222Q SCN5A mutation is associated with reversible ventricular ectopy and dilated cardiomyopathy. J Am Coll Cardiol 2012;60:1566–73.

56. Hwang JK, Park SJ, On YK, Kim JS, Park KM. Clinical Characteristics and Features of Frequent Idiopathic Ventricular Premature Complexes in the Korean Population. Korean Circ J 2015;45:391–7.

57. El Kadri M, Yokokawa M, Labounty T et al. Effect of ablation of frequent premature ventricular complexes on left ventricular function in patients with nonischemic cardiomyopathy. Heart Rhythm 2015;12:706–13.

58. Bozkurt B, Colvin M, Cook J et al. Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies: A Scientific Statement From the American Heart Association. Circulation 2016;134:e579–e646.

59. Penela D, Martinez M, Fernandez-Armenta J et al. Influence of myocardial scar on the response to frequent premature ventricular complex ablation. Heart 2018.

60. Topaloglu S, Aras D, Cagli K et al. Evaluation of left ventricular diastolic functions in patients with frequent premature ventricular contractions from right ventricular outflow tract. Heart Vessels 2007;22:328–34.

61. Wijnmaalen AP, Delgado V, Schalij MJ et al. Beneficial effects of catheter ablation on left ventricular and right ventricular function in patients with frequent premature ventricular contractions and preserved ejection fraction. Heart 2010;96:1275–80.

62. Yao J, Xu J, Yong YH, Cao KJ, Chen SL, Xu D. Evaluation of global and regional left ventricular systolic function in patients with frequent isolated premature ventricular complexes from the right ventricular outflow tract. Chin Med J (Engl) 2012;125:214–20.

53. Tung R, Bauer B, Schelbert H et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: The potential role of occult inflammation in arrhythmogenesis. Heart Rhythm 2015;12:2488–98.

64. Chen Y, Wu S, Li W et al. Higher High-Sensitivity C Reactive Protein is Associated with Future Premature Ventricular Contraction: a Community Based Prospective Cohort Study. Scientific Reports 2018;8:1–7.

65. Anastasiou-Nana MI, Menlove RL, Nanas JN, Anderson JL. Changes in spontaneous variability of ventricular ectopic activity as a function of time in patients with chronic arrhythmias. Circulation 1988;78:286–95. [PubMed: 2456167]

66. Mountantonakis SE, Frankel DS, Gerstenfeld EP et al. Reversal of outflow tract ventricular premature depolarization-induced cardiomyopathy with ablation: effect of residual arrhythmia burden and preexisting cardiomyopathy on outcome. Heart Rhythm 2011;8:1608–14.

67. Zang M, Zhang T, Mao J, Zhou S, He B. Beneficial effects of catheter ablation of frequent premature ventricular complexes on left ventricular function. Heart 2014;100:787–93.

68. Hyman MC, Mustin D, Supple G et al. Class IC antiarrhythmic drugs for suspected premature ventricular contraction-induced cardiomyopathy. Heart Rhythm 2018;15:159–163.

69. Naccarelli GV, Wolbrette DL, Patel HM, Luck JC. Amiodarone: clinical trials. Curr Opin Cardiol 2000;15:64–72.

70. Penela D, Acosta J, Aguinaga L et al. Ablation of frequent PVC in patients meeting criteria for primary prevention ICD implant: Safety of withholding the implant. Heart Rhythm 2015;12:2434–42.

71. Krishnan B, Sankar A, Anand I et al. Post-Extrasystolic Potentiation as a Predictor of Recovery of Left Ventricular Dysfunction After Radiofrequency Catheter Ablation. JACC Clin Electrophysiol 2017;3:1283–1291.

72. Dukes JW, Dewland TA, Vittinghoff E et al. Ventricular Ectopy as a Predictor of Heart Failure and Death. J Am Coll Cardiol 2015;66:101–9.

73. Noda T, Shimizu W, Taguchi A et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J Am Coll Cardiol 2005;46:1288–94.

74. Meinertz T, Hofmann T, Kasper W et al. Significance of ventricular arrhythmias in idiopathic dilated cardiomyopathy. Am J Cardiol 1984;53:902–7.

医脉通是专科的在线大夫平台校园春色 亚洲色图,“感知全国医学脉搏,助力中国临床有打算”是平台的服务。医脉通旗下领有「临床指南」「用药参考」「医学文件王」「医知源」「e研通」「e脉播」等系列居品,全面猖獗医学服务者临床有打算、取得新知及升迁科研后果等方面的需求。



上一篇:跳蛋 户外 “芭蕾女孩”李月在北京的生计(组图)
下一篇:人妖 sm 电影频谈3月23日将播出斯皮尔伯格《东谈主工智能》